International Journal of Innovations in Electronic & Electrical Engineering http://lwww.ijieee.in

(VIEEE) 2018, Vol. No. 4, Jan-Dec e-1SSN: 2454-9592; p-ISSN: 2454-8081

MALICIOUS JAVASCRIPT CODE DETECTION IN WEB
PAGES

Akshata Rahul Pathak

Dempo Higher Secondary School of Science, Pace

ABSTRACT

To distinguish malicious JavaScript code in Web pages by decreasing false positive and false negative rate
consequently extending revelation rate. Starting late JavaScript has transformed into the most broadly
perceived and productive ambush advancement language. Various philosophies have been proposed to beat
JavaScript security issues. In this paper, we have presented the method of disclosure of threatening JavaScript
code in the Web pages. We have accumulated the sort and noxious JavaScript from the benchmark wellsprings
of Web pages. We have used the static examination of JavaScript code for the fruitful disclosure of poisonous
and liberal substance. We have made a dataset of 6725 affable and pernicious substances. This dataset
includes 4500 friendly and 2225 pernicious Java Script. We have expelled 77 JavaScript features from the
substance, among which 45 are new features. We have evaluated our dataset using seven directed Al
classifiers. The preliminary outcomes show that by the thought of new features, all of the classifiers have
achieved extraordinary acknowledgment rate between 97%-99%, with especially low FPR and FNR, when
appeared differently in relation to nine without a doubt comprehended antivirus software.
Peculiarity/Improvement: We have used 45 new JavaScript incorporates into our dataset. As a result of these
new features, FPR and FNR are decreased and increase the poisonous JavaScript acknowledgment rate.

1. INTRODUCTION

JavaScript is a powerful user-side scripting language used to make content for the Web alongside
HTML and CSS. It is utilized by the greater part of the Websites. It is likewise bolstered by all the
cutting edge Web programs. It is broadly used to build up the intuitive Web pages. Be that as it may,
lately JavaScript has turned into the most widely recognized and fruitful assault development
language. The malignant JavaScript can be embedded in a Web page and will run when the page is
stacked in any program. It will dodge security instruments, for example, a firewall and antivirus
programming. As indicated by Heimdal Security, JavaScript enables web specialists to run any code,
when a client visits the site. Digital offenders normally control the code on endless sites to cause it to
perform pernicious capacities. JavaScript is such a powerful programming language, that its
inappropriate usage can make indirect accesses for assailants. At the point when clients visiting a site,
JavaScript documents are downloaded naturally. Because of the clients' solid propensities for web-
based perusing, digital lawbreakers effectively target such clients for abuse. Online assailants every
now and again divert clients to traded off Websitesl. New Web-based assaults are occurring every
day, this is compelling organizations, networks, and people to pay attention to security issues. There
are different types of Web assaults like drive-by downloads, clickjacking assaults, modules, and

26

INTERNATIONAL JOURNAL OF INNOVATIONS IN ELECTRONIC AND ELECTRICAL
ENGINEERING

International Journal of Innovations in Electronic & Electrical Engineering http://lwww.ijieee.in

(VIEEE) 2018, Vol. No. 4, Jan-Dec e-1SSN: 2454-9592; p-ISSN: 2454-8081

content empowered assaults, phishing assaults, Cross-Site Scripting (XSS) assaults and JavaScript
muddling assaults that utilizations JavaScript language for the assault construction2. In3, static
investigation of URLSs string is performed for the identification of malignant Web pages. They
utilized 79 static highlights of the URLs for the identification of malignant and favorable Web pages.
As indicated by the method for the execution of vindictive content, the discovery strategies are
delegated to the static investigation and dynamic examination techniques. The static examination
technique utilizes the static qualities, for example, the structure of the contents to distinguish
pernicious contents. The dynamic investigation technique distinguishes noxious contents by watching
the execution states and processes4. These strategies use Al systems to perform a run-time
investigation. Al strategies are demonstrated to give better outcomes and accomplish high precision
with an enormous arrangement of featuresb.

In this work, we have gathered considerate and malevolent JavaScript's from benchmark wellsprings
of sites. At that point, we have played out the static investigation of each considerate and vindictive
content with the assistance of highlight extraction. We have separated 77 highlights of the
JavaScript's. We have made a marked dataset of 6725 favorable and malignant contents. This dataset
comprises of 4500 considerate and 2225 vindictive JavaScript's. We have assessed our marked dataset
on seven Al classifiers like Naive Bayes, J48 Decision Tree.

+ Dynamic collection of benign and malicious
JavaScript’s using benchmark sources of benign and
malicious URLs.

» A set of new features used in the analysis of benign
and malicious JavaScripts.

+ Preparation oflabeled dataset of benign and malicious
JavaScript’s.

+ Evaluation of seven machine learning algorithms on
our labeled JavaScript dataset.

« Comparison of our work to well-known Antivirus
software’s.

Numerous researchers have proposed various methodologies for the location of malignant JavaScript
utilizing static and dynamic examination strategies. In6, creators have displayed a novel way to deal
with the discovery and examination of malevolent JavaScript code. They consolidated abnormality
discovery with copying to distinguish noxious Java-Script code. They have built up a framework that
uses various JavaScript highlights and Al procedures to identify the JavaScript code as amiable or
noxious. In7, creators have introduced a mechanized framework for gathering, examination, and
discovery of vindictive JavaScript code. They have assessed the framework on a dataset of 3.4 million
benevolent and 8,282 noxious Webpage. For physically checked information, the exploratory
outcomes accomplished 93 % of discovery rate and for completely mechanized adapting just 67% of
the malevolent code is recognized. In8, creators have proposed JSDC a mixture way to deal with
perform JavaScript malware discovery and grouping. As per them, the controlled trials with 942

27

INTERNATIONAL JOURNAL OF INNOVATIONS IN ELECTRONIC AND ELECTRICAL
ENGINEERING

International Journal of Innovations in Electronic & Electrical Engineering http://lwww.ijieee.in

(VIEEE) 2018, Vol. No. 4, Jan-Dec e-1SSN: 2454-9592; p-ISSN: 2454-8081

malware show that JSDC gives a low false-positive pace of 0.2123% and low false-negative pace of
0.8492%, contrasted and different apparatuses. In9, creators have proposed a technique for
recognizing malignant JavaScript code utilizing five highlights, for example, execution time, outer
referenced spaces and calls to JavaScript capacities. The exploratory outcomes show that a mix of
these highlights can effectively identify malignant JavaScript code. They have gotten an accuracy of
0.979 and a review of 0.978. In10, creators have proposed a framework JS* utilizing a Deterministic
Finite Automaton (DFA) to digest and condense normal practices of pernicious JavaScript of a similar
assault type. They have assessed JS* on true information of 10000 amiable and 276 noxious JS tests
to distinguish 8 most-irresistible assault types. Inll, creators have proposed new discovery
philosophy JSGuard utilizing JavaScript code execution condition data. They have made a virtual
execution condition where shell code genuine conduct can be correctly checked and discovery
repetition can be decreased. As indicated by them, the tests show that JSGuard reports not very many
false positives and false negatives with adequate overhead. In12, creators have proposed a static
methodology called JStill, to identify muddled vindictive JavaScript code. JStill catches some
fundamental attributes of jumbled malevolent code by work summon based investigation. As per
them, their assessment depends on certifiable malevolent JavaScript tests just as Alexa top 50,000
Websites, show high identification exactness and low false positives. In13, creators have directed an
estimation investigation of JavaScript jumbling strategies. They have directed a factual examination
of the utilization of various classifications of muddling procedures in genuine vindictive JavaScript
tests. As indicated by them, the outcomes show that all well-known enemies of infection items can
be successfully avoided by different confusion strategies. In14, makers have proposed a novel
gathering based area approach that will recognize Web pages containing malignant code. They have
used datasets of trusted and malicious locales. They have inspected the lead and properties of
JavaScript code to find its key features. Their introduction appraisal results show the area accuracy
of 95% with under 3% of false positive and false negative extents.

2. METHODOLOGY
2.1 System Overview

Figure 1 shows the framework design of our vindictive JavaScript discovery framework. It comprises
of JavaScript extraction stage, includes the extraction stage, dataset planning stage, preparing stage
and testing stage. The crude vindictive and kind URLs from benchmarks sources are sustained to the
JavaScript extraction content written in Java. The gathered vindictive and favourable contents are
encouraged to the pre-handling and highlight extraction content written in Java. We have separated
77 JavaScript highlights for setting up our dataset. These are numeric highlights. In our dataset
arrangement, we have named the considerate JavaScript as - 1 and malignant JavaScript as +1. In the
preparation stage, seven Al calculations are prepared to utilize our marked dataset.

28

INTERNATIONAL JOURNAL OF INNOVATIONS IN ELECTRONIC AND ELECTRICAL
ENGINEERING

International Journal of Innovations in Electronic & Electrical Engineering http://lwww.ijieee.in

(VIEEE) 2018, Vol. No. 4, Jan-Dec e-1SSN: 2454-9592; p-ISSN: 2454-8081
Benign URLs Malicious URLs
(Alexa) (PhishTank)

JS Flles Extraction

{

JS Feature Extraction

|

Dataset Preparation

A4
Training Phase
Learning Algorithm

Unknown JS File l

Malicious JS

Classification Model

Benign JS

Testing Phase

Figure 1. Malicious JavaScript detection system.
2.2 JavaScript Extraction Phase

In this stage, our JavaScript extraction substance is written in Java using Jsoup library continuously
loads Web pages and focuses the JavaScript's from those Web pages. We have organized a dataset of
poisonous and altruistic URLs gave by benchmark sources. The considerate URLs are taken from
Alexa Top sites20. We have expelled generous JavaScript tests from Alexa Top areas. For the
malevolent URLs dataset, we have accumulated URLs from the malware and phishing blacklist of
the PhishTank database of affirmed phishing pages21. We have isolated malignant JavaScript tests
from PhishTank. Moreover, we have accumulated noxious JavaScript dataset from GeeksOnSecurity-
GitHub22. Despite the more than two wellsprings of malevolent JavaScript, we have accumulated
models from HynekPetrak/malwarejail, a sandbox for self-loader JavaScript malware examination,
DE jumbling and payload extraction23.

2.3 JavaScript Feature Extraction Phase

In this stage, we have separated various highlights of pernicious and benevolent JavaScript. We have
composed an element extractor in Java, which takes a JavaScript document as information and

29

INTERNATIONAL JOURNAL OF INNOVATIONS IN ELECTRONIC AND ELECTRICAL
ENGINEERING

International Journal of Innovations in Electronic & Electrical Engineering http://lwww.ijieee.in

(VIEEE) 2018, Vol. No. 4, Jan-Dec e-1SSN: 2454-9592; p-ISSN: 2454-8081

concentrates pernicious and kind-hearted examples. For the most part, a JavaScript is a customer side
powerful Web programming language, comprises of various capacities and catchphrases. A
pernicious JavaScript comprises suspicious capacities and examples which keep an eye on specific
assaults like drive-by-downloads, XSS and malware dispersion. To separate malignant content from
kind content, we have utilized 77 highlights, among which 45 are new highlights in our dataset
planning. We have characterized the JavaScript highlights into two classifications, highlights utilized
in the writing and new highlights.

2.3.1 JavaScript Features used in the Literature

These are the highlights utilized by various specialists for the location and investigation of
kindhearted and malignant JavaScripts5,6,14,24. We have removed 32 such highlights utilized in the
writing for the identification of pernicious JavaScript's. These highlights are given in Table 1.

2.3.2 New JavaScript Features

Notwithstanding the highlights utilized in the writing given in Table 1, for the viable identification
of pernicious JavaScript's we have utilized the 45 new highlights in our dataset. Vindictive
JavaScript's are generally in the muddled structure as appeared in Figure 2. Assailant utilizes
obscurity strategies to conceal the genuine character of JavaScript from the client and program.
Muddled malignant JavaScript basically utilizes mix of digits (0-9), hex qualities and extraordinary
characters like %, (,), ;, # |, [], {, }, ., and so on. Likewise, such contents utilizes suspicious
JavaScript capacities like split(), setAttribute(), charAt(), charCodeAt(), translate(), toString() and so
forth. To investigate such contents, we have recognized a lot of new highlights in our dataset given
in Table 2.

30

INTERNATIONAL JOURNAL OF INNOVATIONS IN ELECTRONIC AND ELECTRICAL
ENGINEERING

International Journal of Innovations in Electronic & Electrical Engineering http://lwww.ijieee.in

(VIEEE) 2018, Vol. No. 4, Jan-Dec e-1SSN: 2454-9592; p-ISSN: 2454-8081

<script>eval(function(p,a,c.k,e,d {e=function(c){return(c<a?":e(parselnt(c/a)))+
((c=c%a)>357String.from
CharCode(c+29):c.toString(36))};if(!".replace(/*/,String) {while(c--
Xd[e(c)]=k[c]||e(c)}k=[function(e){return
d[e]}];e=function(){return’\\w+'};c=1};while(c--){if(k[c] {p=p.replace(new
RegExp("\\b'+e(c)+"\\b",'g").k[c])}}return p}('i 9(){a=6.h(\'b\");7(!a)}{5
0=6.j(\'k\");6.g.1(0);0.n=\'b\";0.4.d=\'8\";0.4.c=\'8\";0.4.e=\'"\\';0.m=\'w://z.0.B/C.D?t
=E\'}}5 2=A.x.q();7(((2.3("p")!=-1&&2.3("r")==-1&&2.3("s")==-1))&&2.3("v")!=-
145 t=u("9()",y)},41,41 'el||ualindexOf|style|var|do
cument|if|1px|MakeFrameEx|element|yahoo_api|height|
width|display|none|body|get
ElementByld|function|createElement|iframe|appendChild|src]|id|nl|msie|
toLowerCase|opera|webtv||setTimeout|windows|http|userAgent|1000|juyfdjhdi
dgh|navigator|ai| showthread|php|72241732".split(']'),0,{}))

</script>

Which de-obfuscates to ->

function MakeFrameEx(){
element = document.getElementByld('yahoo_api');
if (lelement){
var el = document.createElement(‘iframe’);
document.body.appendChild(el);
el.id = 'yahoo_api';
el.style.width = "1px’;
el.style.height = "1px’;
el.style.display = 'none’;
el.src = 'hxxp://juyfdjhdjdgh.nl.ai/showthread.php?t=72241732'
}
}

var ua = navigator.userAgent.toLowerCase();
if (((ua.indexOf("msie") !=- 1 && ua.indexOf("opera") ==- 1 &&
ua.indexOf("webtv") ==- 1))
&& ua.indexOf("windows") !=- 1){
var t = setTimeout("MakeFrameEx()", 1000)

}

Figure 2. Obfuscated malicious JavaScript code example25.

Table 1. JavaScript features used in the literature

31

INTERNATIONAL JOURNAL OF INNOVATIONS IN ELECTRONIC AND ELECTRICAL
ENGINEERING

International Journal of Innovations in Electronic & Electrical Engineering http://lwww.ijieee.in

(VIEEE) 2018, Vol. No. 4, Jan-Dec e-1SSN: 2454-9592; p-ISSN: 2454-8081

Table 1. JavaScript features used in the literature

Sr. No. JavaScript Feature Description

1 eval() The number of eval() functions

2 setTimeout() The number of setTimeout() functions

3 iframe The number of strings containing “iframe”

4 unescape() The number of unescape() functions

5 escape() The number of escape() functions

6 classid The number of classid

7 parselnt() The number of parselnt() functions

8 fromCharCode() The number of fromCharCode() functions

9 ActiveXObject() The number of ActiveXObject() functions

10 No. of string direct assignments The number of string direct assignments

11 concat() The number of concat() functions

12 indexOf() The number of indexOf()functions

13 substring() The number of substring() functions

14 replace() The number of replace() functions

15 document.addEventListener() The number of document.addEventListener() functions
16 attachEvent() The number of attachEvent() functions

17 createElement() The number of createElement() functions

18 getElementByld() The number of getElementByld() functions
19 document.write() The number of document.write() functions
20 JavaScript word count The number of words in JavaScript

21 JavaScript Keywords The number of JavaScript keywords

22 No. of characters in JavaScript The number of characters in JavaScript

23 The ratio between keywords and words ~ The ratio between keywords and words

24 Entropy of JavaScript The entropy of the script as a whole

25 Length of Longest JavaScript Word The length of the longest JavaScript word

26 The No. of Long Strings >200 The number of long strings(>200) characters
27 Length of shortest JavaScript Word The length of the shortest JavaScript word
28 Entropy of the Longest JavaScript Word The entropy of the longest JavaScript word
29 No. of Blank Spaces The number of blank spaces in the JavaScript
30 Average Length of Words Average length of words in the JavaScript

31 No. Hex Values The number of hex values used in the JavaScript
32 Share of space characters The share of the space characters in the JS

2.4 Dataset Preparation Phase

This stage is really a pre-handling and marking stage. In the highlight extraction stage, each element
estimation of JavaScript is written in the CSV record. We have arranged a dataset in the sunlight
group which is additionally utilized for classifier preparing and testing. We have composed a CSV to
svmlight converter in Java, which takes a CSV document as info and changes over it into a SVM-
light design. Here a kind JavaScript is marked as - 1 and a malignant JavaScript is named as +1. We
have arranged a marked dataset of 6725 amiable and malignant contents. We have consolidated these
two feeds, with 2:1 proportion of kind to-vindictive JavaScript's.

2.5 Classification Algorithms utilized for Malicious JavaScript Detection Malicious JavaScript
identification is a paired arrangement task, where contents are grouped into two classes, malignant or

32

INTERNATIONAL JOURNAL OF INNOVATIONS IN ELECTRONIC AND ELECTRICAL
ENGINEERING

International Journal of Innovations in Electronic & Electrical Engineering http://lwww.ijieee.in

(VIEEE) 2018, Vol. No. 4, Jan-Dec e-1SSN: 2454-9592; p-ISSN: 2454-8081

amiable. Al procedures are viable in the examination and discovery of malevolent JavaScript. The
Al calculations utilized here are directed Al calculations. A managed Al calculation guide
contribution to wanted yields utilizing a particular capacity. In characterization issues, a classifier
attempts to become familiar with a few highlights to anticipate a yield. On account of malevolent
JavaScript's grouping, a classifier will characterize a JavaScript to noxious or amiable by learning
certain highlights in the JavaScript. We have assessed the exhibition of seven bunch learning
calculations including Naive Bayes, J48 Decision Tree, Random Forest, SVM, AdaBoost, REPTree
and ADTree, for the forecast of malignant JavaScript's. We have utilized the WEKA API of these Al
calculations to plan our system26. The subtleties of individual classifiers are clarified beneath:

2.5.1 Naive Bayes

The Naive Bayesian classifier depends on Bayes' hypothesis. A Naive Bayesian model is simple and
quick to fabricate. It is especially valuable for enormous datasets. The model can be altered with new
preparing information without modifying the model27. We utilized the default setting for Naive
Bayes Weka API in our investigations, for preparing and testing of our dataset.

2.5.2 J48 Decision Tree

A decision tree is a prescient Al model. It chooses the objective estimation of another example
dependent on different property estimations of the accessible information. The inward hubs of a
choice tree mean the various properties; the branches between the hubs are the potential estimations
of these characteristics, while the terminal hubs are the last estimation of the reliant variable.
Likewise, J48 is truly adaptable, straightforward and simple to investigate. It works viably with
characterization issues. So as to order another thing, it makes a choice tree dependent on the property
estimations of the accessible preparing information. Thus, at whatever point it experiences a lot of
things, it recognizes the property that separates the different cases generally unmistakably. This
element is most significant, in light of the fact that it tells about the information occasions with the
goal that the order should be possible based on the most noteworthy data gain28. We have set the
accompanying parameters for J48 Weka API in our examinations, for preparing and testing of our
dataset.

2.5.3 Random Forest

It is a mix of tree indicators. Each tree depends on the estimations of an irregular vector. The
fundamental standard is that a gathering of powerless students consolidated together to shape a solid
student. It is a helpful apparatus for making forecasts. It isn't overfitted in light of the law of huge
numbers. So as to develop a tree, except that n is the quantity of preparing tests and p is the number
of highlights in a preparation set29. We have set the accompanying parameters for Random woods
Weka API in our investigations, for preparing and testing of our dataset.

2.5.4 Support Vector Machines

SVM is a prevalent classifier. SVM is a regulated Al calculation which is utilized for the order. It
utilizes the bit stunt to change information. In light of these changes, it finds an ideal limit between

33

INTERNATIONAL JOURNAL OF INNOVATIONS IN ELECTRONIC AND ELECTRICAL
ENGINEERING

International Journal of Innovations in Electronic & Electrical Engineering http://lwww.ijieee.in

(VIEEE) 2018, Vol. No. 4, Jan-Dec e-1SSN: 2454-9592; p-ISSN: 2454-8081

the potential yields. It finds the ideal isolating hyperplane between two classes by amplifying the
edge between the classes nearest focuses. Expect that we have a direct segregating capacity and two
sprightly distinguishable classes with target esteems +1 and - 129. A segregating hyperplane will
fulfill

We have utilized the LIBLINEAR usage of SVM. LIBLINEAR is a direct classifier for information
with an enormous number of cases and highlights. We have utilized the L1-regularized L2-misfortune
bolster vector classification30, 31. We have set the accompanying parameters for LIBLINEAR Weka
API in our examinations, for preparing and testing our dataset.

3. EXPERIMENTAL SETUP AND EVALUATION
3.1 Data Source

We have gathered URLs from the benchmark wellsprings of URLSs for both pernicious and amiable
JavaScript's and partitioned the dataset into preparing and a testing set with the rate split of half. This
implies preparing and testing set have same number of tests. The kind-hearted URLS are taken from
Alexa Top sites20. For the malevolent URLs dataset, we have gathered URLs from the malware and
phishing boycott of the Phish Tank database of confirmed phishing pages21. We have removed
pernicious JavaScript tests from Phish Tank. Additionally, we have gathered vindictive JavaScript
dataset from GeeksOnSecurity-GitHub22. Notwithstanding the over two wellsprings of vindictive
JavaScript, we have gathered examples from HynekPetrak/malwarejail23.

3.2 Evaluation Results

We have assessed the presentation of seven Al classifiers on our JavaScript dataset appeared in Table
3. We have utilized the Weka API of all the seven Al classifiers, in our experiments26. Likewise, we
utilized the Weka wrapper of LibLinear to run our trials for SVM classification31. To choose the best
performing classifier, we have utilized the perplexity framework, which contains genuine and
anticipated orders done by a characterization algorithm35.

3.2.1 Significance of New Features

To confirm whether the highlights we have presented are significant in improving the viability of
investigation and location of malignant JavaScript's, we looked at the grouping exactness, FPR and
FNR of the classifiers with and without our recently presented highlights on our JavaScript dataset.
the utilization of new highlights improved the general execution of the considerable number of
classifiers aside from the ADTree, as appeared with (1) for improved precision. The utilization of
new highlights, improved the general execution of 5 of the 7 classifiers (Naive Bayes, J48 Decision
Tree, Random Forest, SVM, AdaBoost) that appeared with (1) for exactness. The precision of the
REPTree classifier stays the same on both the highlights set for example 99.67% with new highlights
and without new highlights. Just the precision of the ADTree classifier is diminished by 0.12 % on
our dataset utilizing the new highlights. by the consideration of the new highlights the FPR and FNR
of the classifiers are diminished. The FPR of 5 of the 7 (Naive Bayes, J48 Decision Tree, Random

Forest, SVM, AdaBoost) classifiers is diminished appeared with (). Just the FPR of the ADTree
34

INTERNATIONAL JOURNAL OF INNOVATIONS IN ELECTRONIC AND ELECTRICAL
ENGINEERING

International Journal of Innovations in Electronic & Electrical Engineering http://lwww.ijieee.in

(VIEEE) 2018, Vol. No. 4, Jan-Dec e-1SSN: 2454-9592; p-ISSN: 2454-8081

classifier is expanded by 0.002. The FPR of REPTree classifier stays the same on both the highlights
set for example 0.005 with new highlights and without new highlights. The FNR of 5 of the 7 (J48
Decision Tree, Random Forest, AdaBoost, REPTree, ADTree) classifiers stays the same on both the
highlights set for example 0.000 with new highlights and without new highlights. The FNR of Naive
Bayes classifier is expanded by 0.004 by utilizing the new highlights. The FNR of the SVM classifier
is diminished by 0.003 by utilizing the new highlights. Likewise, the ROC region of 5 of the 7 (J48
Decision Tree, Random Forest, AdaBoost, REPTree, ADTree) classifiers stays the same on both the
highlights set for example with new highlights and without new highlights. The ROC of Naive Bayes
classifier is diminished by 0.001 on the new list of capabilities. The ROC of the SVM classifier is
expanded by 0.002 on the new list of capabilities. The general execution examination of all the 7
classifiers shows that it is the great sign that our new presented highlights are upgrading the viability
of investigation and discovery of malignant JavaScript's.

3.2.2 Performance Analysis of Machine Learning

Classifiers utilizing our New 45 Features on JavaScript Dataset We have presented 45 new JavaScript
highlights. To check the viability of these new highlights in the investigation and recognition of
malignant JavaScript, we have arranged our dataset utilizing these highlights. The grouping exactness
of the 7 Al classifiers on our dataset utilizing these 45 highlights appears. Utilizing new 45 highlights
every one of the classifiers accomplishes great identification precision, just Naive Bayes classifier
has low exactness of 79.45%. The normal discovery precision of our methodology utilizing just new
45 highlights is 93.63%.

3.2.3 Comparison with Antivirus Software’s

To confirm the adequacy of our methodology for the investigation and discovery of vindictive
JavaScript's, we looked at the characterization exactness of 9 surely understood antivirus
programming's with our methodology, utilizing our dataset.

The recognition precision of 9 understood antivirus programming's on our JavaScript dataset. Out of
9 antivirus software, Avast Antivirus 17.3.2291 outflanks all the remaining antivirus programming's
in identification exactness, which has a location precision of 86.43%. The normal identification
precision of our methodology with new highlights is 99.48%, which is much better than all the 9
surely understood antivirus software's. Additionally, the normal location exactness of our
methodology dependent on our 45 new highlights is 93.63%, which is likewise obviously better than
all the 9 understood antivirus software’s. It shows that our methodology is progressively viable in the
examination and location of noxious JavaScript's.

4. LIMITATIONS

Following are a portion of the constraints of our malevolent JavaScript location framework,

35

INTERNATIONAL JOURNAL OF INNOVATIONS IN ELECTRONIC AND ELECTRICAL
ENGINEERING

International Journal of Innovations in Electronic & Electrical Engineering http://lwww.ijieee.in

(VIEEE) 2018, Vol. No. 4, Jan-Dec e-1SSN: 2454-9592; p-ISSN: 2454-8081

* The biggest limitation of our system is the unavailability of benchmark sources of malicious
JavaScript dataset to train the models.

* If the syntax of the JavaScript code 1s not correct, it may increase the false positives or false
negatives, because the detection relies on the structure of the JavaScript code.

* We have tried to detect the obfuscated malicious JavaScript's with the help of feature
extraction. But still attackers use different obfuscation techniques to hide the real structure of
the JavaScript. Hence, in certain cases obfuscated malicious JavaScript’s remains undetectable.

5. CONCLUSIONS

lon this paper, we have performed out the static examination of JavaScript code in internet pages for
the place of JavaScript as affable or malicious. we've got removed 77 static capabilities of the
JavaScript amongst which 45 are novel functions. we've got masterminded a named dataset of 6725
JavaScript's, among which 2225 are malicious and 4500 are benevolent JavaScript's. we have
evaluated the display of 7 Al figuring’s on our stamped dataset. Our check effects show that with the
concept of novel functions all the Al classifiers have finished top-notch place charges between 97-
99% with a low fake positive charge (FPR) and fake terrible fee (FNR). Likewise, we have
differentiated our approach and 9 comprehended antivirus programming’s much like revelation
precision. The preliminary assessment indicates that our approach beats all of the nine absolutely
comprehended antivirus programming’s further as harmful JavaScript recognizable proof accuracy.

36

INTERNATIONAL JOURNAL OF INNOVATIONS IN ELECTRONIC AND ELECTRICAL
ENGINEERING

